Towards Affordable Transparent Aluminum

Screen capture of the molecular diagram of transparent aluminum on an old Apple computer screen from the movie Star Trek 4: The Voyage Home
[dc]C[/dc]ontrary to popular belief, transparent aluminum is real… It’s just prohibitively expensive (or at least it was). It is known in the scientific world as magnesium aluminate or spinel. It is a mineral ceramic that is capable of allowing the visible and infrared spectrum to pass through (which is why it is often used in military applications). It is significantly stronger and harder than glass.

The U.S. Navel Research Laboratory (NRL) has discovered a cheaper method of producing the material that also requires less energy. The new method discovered uses a low-temperature hot-press that limits the size of the spinel only to the size of the press used to form it. The laboratory team, lead by Dr. Jas Sanghera, has agreed to hand over the method to the commercial industry to allow businesses to fully utilize the promising material. Because of it’s previously high cost it was primarily used in military and police armor.

Application

What can this material be used for now? A wide range of things. Lets start with cell phones. A phone screen made of transparent aluminum would be very difficult to scratch and would not shatter if you dropped the phone onto concrete. Since this material is easily bullet-resistant it could also be used to lower the cost and weight of armor for vehicles. Bullet-resistant glass for vehicles used to protect high-profile individuals such as celebrities, business persons, and politicians could be reduced in thickness while still providing the same ballistics protection. Current bullet-resistant material of choice is thick Plexiglas but to prevent most bullets from penetrating the material has to be very thick and therefore very heavy. Transparent aluminum could be used instead which would reduce weight, be easier to install, and reduce the amount of fuel the vehicle used. Because of the optical properties it is also likely to be used by the solar power industry in the future as well. It could provide better protection for solar cells with the possibility of even enhancing efficiency if the optical properties could be tuned.

The video below is from the movie Star Trek IV: The Voyage Home where Chief Engineer Montgomery “Scotty” Scott (played by the late James Doohan) along with Doctor Leonard “Bones” McCoy (played by the late Jackson DeForest Kelley) have traveled back in time and are in need of a container to hold two humpback whales and the water needed for them to survive. Scotty pulls up the chemical structure of transparent aluminum on the computer for the manager of Plexicorp, a ceramics manufacturer, and offers the deal of a lifetime.

Google’s Cell Service Play

Google Project fi logo - a green and blue lower-case "f" and yellow "i". The dot above the "i" is white and overlaps the cross of the "f".

Google likes to jump into a number of businesses that involve technology. They are heavily involved in robotics and are developing a self-driving car, conduct a number of research projects, jumped into the cloud computing ring, more recently became an ISP (Internet Service Provider) by rolling out fiber-optic internet to a number of cities across the United States, and develop the Andorid OS (operating system) that runs roughly half of the world’s cell phones. Now they are looking to take over your cell phone service as well. Google just announced Project Fi, their new mobile phone service.

Google Project fi logo - a green and blue lower-case "f" and yellow "i". The dot above the "i" is white and overlaps the cross of the "f".
Google’s Project fi Logo

The new service — currently only open to a few who request an invite — offers mobile phone service for $20 per month with data starting at $30 per month for 3 GB (gigabytes) — total of $50 per month. That is a little underwhelming given that other wireless carriers offer similarly-priced plans. It is not until you add in the discounts and features they it becomes mildly intriguing. First of all they refund you for the data you did not use. So you get refunded for the amount of data you don’t use under $3. So if you only use 1 GB in a month they will refund you $20 (data is charged at $10 per GB). There are no contracts.

One of the major drawbacks of this service is the phone selection. There is none. Currently you can only use the Motorola-produced Google Nexus 6. Sorry, no Apple iPhones here.

Where this show gets somewhat more interesting is how the service works: It uses 2 networks. Google partnered with Sprint and T-Mobile — both providers use similar technology in their networks — and the phone can simply hop onto the network that has the strongest signal. This probably increases the signal strength mildly since Sprint and T-Mobile are the smaller networks operating in the U.S. The other way to make calls is over a Wi-Fi network (including the many open networks available at restaurants, coffee shops, airports, and other offices and retail stores nationwide). However, even that is not new: T-Mobile already offers a service that allows for calls over a Wi-Fi connection.

On the plus side if you travel a lot it could be a sigh of relef. Some other mobile service providers make you jump through hoops, pay a little to a lot more for service and/or data, or simply don’t offer service in other countries. This new plan from Google works in more than 120 countries (since Sprint and T-Mobile use the same wireless technology the majority of service providers outside the U.S. use it is more compatible) though data speed is limited since only 3G connections will work. They also do not charge any more for data when traveling. It’s still the same $10 per GB. International calling rate of $0.20 per minute apply. No extra charges for texting internationally.

It’s an modest start — it’s not likely to cause a mass-exodus from other cell service providers — but will be interesting to see how their service evolves.

Carbon Nanotube Filtering Breakthrough

Yellow stick of butter with two lines - one drawn across the top to represent a semiconducting wire that has not melted through the butter and another that has sunk to the bottom of the butter representing a conducting wire. The example shows a way to purify - or sort - carbon nanotubes with different properties.

Carbon nanotubes, microscopically-thin wires of carbon atoms, can be produced in sufficient quantity but not sufficient quality for electronics. They often include a bundle of wires where some are conductive, like the power wires going from your computer to the wall outlet, and some are semiconducting — the kind needed for processing information. Science Daily reports on a carbon nanotube purification breakthrough by a research team at University of Illinois at Urbana–Champaign, lead by professor John Rogers. Efforts to purify or sort conducting from semiconducting nanotubes have been expensive and require many steps. The new method discovered can be explained easily.

Imaging you have a stick of butter and you lay two thin metal wires — one a standard metal wire and the other a semiconducting wire — over top of the butter then attach the positive and negative electrodes of a battery to each end of wire. After a few seconds what happens? The conductive metal wire heats up and sinks into the butter stick. The semiconducting wire does not heat up nearly as much due to restricting the electron flow — so it does not sink into the butter as deeply. Instead the semiconducting wire stays nearly on the surface of the butter. Once the process is complete you can easily separate the conductive and semiconducting wire since the conductive one is at the bottom of the butter stick. Image edited to show example:

Yellow stick of butter with two lines - one drawn across the top to represent a semiconducting wire that has not melted through the butter and another that has sunk to the bottom of the butter representing a conducting wire. The example shows a way to purify - or sort - carbon nanotubes with different properties.

WARNING: DO NOT try the experiment described above! It is dangerous and could lead to burns or even an explosion — the battery and wires will heat up and can remain hot and the battery may even explode!

This new method of using current-induced heat to separate nanotubes of different properties is easy to do and is compatible with current manufacturing methods.

Superconductivity Evolves

Light grey background and atomic element symbol "Al" (aluminum/aluminium) surrounded by a back circle which is surrounded by 3 progressively larger gray circles containing 13 solid circles representing the electrons in the atom. The 3 outer rings contain 2, 8, and 3 circles respectively.

Every so often it is reported that a new type of superconductivity or a new material that can super-conduct past a certain energy is discovered. The difference between the previous energy level and the new is typically relatively small — usually within a few single digits of the last (sort by the Tc (K) field). Phys.org reports on a potential breakthrough by researchers at the University of Southern California (USC) who have discovered both a new material type that may super-conduct at a significantly higher energy level (and temperature) than current superconductors. The material? An exotic, rare, and expensive mineral? Nope, plain old aluminum atoms in a cluster.

Light grey background and atomic element symbol "Al" (aluminum/aluminium) surrounded by a back circle which is surrounded by 3 progressively larger gray circles containing 13 solid circles representing the electrons in the atom. The 3 outer rings contain 2, 8, and 3 circles respectively.
Atomic structure of an aluminum/aluminium element.

The aluminum atoms have a potential critical transition (energy/temperature at which pairs of electrons mimic each other’s movements known as Cooper pairs) of 100 K (Kelvin) or about -280 degrees Fahrenheit (F). That sounds pretty cold but not when you compare it to the current high of 39 K (about -389°F). A difference of 61 K or 110°F. The researchers also believe this new material type is only the beginning and could lead to other materials with even higher transition energies and temperatures — potentially even to room temperature superconductors.

Obviously this has yet to be experimentally proven — the researchers did some preliminary experiments that show a very good possibility of superconductivity at those energies but did not actually create an aluminum superconductor. In short — looks good on paper, but may not actually exist. It will still be interesting to watch and see what happens as experiments progress with this new material type.

Multiprocessing Data Structure

A 4-level skip list where the first column is filled with the number 30, the first row of the second column contains, the first, second, and third rows of the third column are filled with the number 50, the first row of the fourth column is filled with the number 60, the first and second rows of the fifth column is filled with the number 70, and the first row of the sixth column is filled with the number 90. The animation adds two 80s and a 45 by searching through across each row before moving to the row below for the number less than or equal to the number being inserted.

Phys.org reports on an issue with processing priority queues in a world dominated by an ever-increasing number of cores. When processors (CPUs) add, remove, and read through these structures they cache the first item in the list so that it can be easily accessed and processed by a single-core processor. However this cache is the same for all available cores and when something gets changed (added or removed) it means the cache for all the cores needs to be cleared and re-read before it can be read or changed again. As you might imagine when there are 4, 8, or even more (say, 40? 80?) cores all attempting to read through, add, change, or delete items in this structure it can cause a massive slowdown that essentially obliterates the performance gain that should be had from having many cores.

A 4-level skip list where the first column is filled with the number 30, the first row of the second column contains, the first, second, and third rows of the third column are filled with the number 50, the first row of the fourth column is filled with the number 60, the first and second rows of the fifth column is filled with the number 70, and the first row of the sixth column is filled with the number 90. The animation adds two 80s and a 45 by searching through across each row before moving to the row below for the number less than or equal to the number being inserted.
An animation of additions to a skip list by Artyom Kalinin on Wikimedia Commons.

Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory may have found an answer. First they looked at using a different structure — a linked list. However, this too suffered from a similar issue; You need to access the first item then traverse the sequence to find the memory address needed. Instead they tried skip lists that create rows of linked lists in order to make it more efficient to search through a linked list — a “hierarchical linked list”. They then take it a step further by starting the search lower down the hierarchy depending on how many processing cores are available. The researchers point out that it is not a perfect solution as there can still be a collision — when a data item appears at more than one level of the hierarchy — but the chances of such a collision happening are rare.

Mythbusters: Video Games Special

Discovery's Mythbusters Video Games special logo made to appear like an old-school 16-bit video game menu. The fonts are mostly mono-spaced and using terminal-like fonts. About one-quarter from the top is the title "MYTHBUSTERS" in large, bold, yellow, mono-spaced type with red outline around each of the characters. Hosts Jamie Hyneman and Adam Savage are represented by 16-bit game caricatures where their heads are covering the title and their hands are folded across their chests. Under the title and hosts is bold, red text with a large red outline reading "VIDEO GAMES" and in white text at the bottom is "Press Start." The background is black space filled with white plus-shaped blue and white stars and a dark blue gradient that becomes opaque at the bottom.
Discovery's Mythbusters Video Games special logo made to appear like an old-school 16-bit video game menu. The fonts are mostly mono-spaced and using terminal-like fonts. About one-quarter from the top is the title "MYTHBUSTERS" in large, bold, yellow, mono-spaced type with red outline around each of the characters. Hosts Jamie Hyneman and Adam Savage are represented by 16-bit game caricatures where their heads are covering the title and their hands are folded across their chests. Under the title and hosts is bold, red text with a large red outline reading "VIDEO GAMES" and in white text at the bottom is "Press Start." The background is black space filled with white plus-shaped blue and white stars and a dark blue gradient that becomes opaque at the bottom.
Discovery’s Mythbusters Video Games Special Title Screen

This preview of next week’s new episode of Mythbusters on Discovery previews host Adam Savage sneaking through rooms setup like the DOOM video game complete with old-school growls, plasma guns, and chainsaws. Next week Jamie and Adam will be taking on video game myths and will be interesting to see what they come up with and could possibly be plausible or confirmed in a world design to be pure fiction…

[Unfortunately because Discovery’s video embeds do not support loading on an encrypted page you will need to follow this link to see the video preview.]

WiFi Traffic Management Algorithm

Visual representation of the 2.4 GHz WiFi frequency channels. Each channel is represented by a dotted half-circle representing 22 MHz of bandwidth. The half-circles representing the 3 front channels (1, 6, and 11) have solid outlines. The others overlap behind and between the front 3 channels except for channel 14 which only overlaps the edges of the 12th and 13th channels.

Phys.org reports on a new algorithm developed by a doctoral student at École polytechnique fédérale de Lausanne (EPFL) that changes frequencies and bandwidth usage based on the type of data packets being sent and received. Many routers today are set by default to use channel 6 of the 2.4 GHz frequency which causes a build-up of WiFi traffic on that channel. The problem is that many other channels overlap and use much of the same frequencies. In fact, while there are 14 total channels made available in the 2.4 GHz range, many countries ban the use of some of those frequencies. In the United States (US) channels 12 through 14 are not able to be used yet are the ones with the greatest frequency gap between channels. In effect, because the frequency bands overlap you can argue that there are really only 3 available spaces to transmit data in the 2.4 GHz WiFi band.

Visual representation of the 2.4 GHz WiFi frequency channels. Each channel is represented by a dotted half-circle representing 22 MHz of bandwidth. The half-circles representing the 3 front channels (1, 6, and 11) have solid outlines. The others overlap behind and between the front 3 channels except for channel 14 which only overlaps the edges of the 12th and 13th channels.
Visual representation of the 2.4 GHz WiFi frequency channels and how they overlap (22 MHz channels). Creative commons licensed image by Michael Gauthier on Wikimedia Commons.

The graph above shows the frequency channels for the 2.4 GHz WiFi range and how the channels overlap. Most routers are set to channel 6 by default and while they may change channels depending on availability they generally pick a channel and stick with it. In addition, many routers will use up to 8 of these channels at the same time. The problem is that this rather small range gets filled up in areas where many routers are being run and essentially cause a traffic jam of data. The other problem is that because routers will often stick with a set channel other may actually be open and unused.

The new algorithm would determine the bandwidth requirements of the data being sent and received and would select an appropriate channel and width. It essentially removed the idea of “channels” and instead divvies up the available frequency range into “lanes.” Some of the lanes are specialized similar to having a carpool or bike lane. As an example, if all you did was check your e-mail and browse a few websites you don’t need much bandwidth. The new algorithm would utilize a small amount of bandwidth – say within channels 1 and 2 – for just website browsing and email. Videos such as Vimeo and YouTube, which require much more bandwidth, may get a large chunk of channels 6 through 10 to use, and the remaining could be used for various other purposes such as websites with larger images, chat programs, and cell-phone updates. It spreads out the use over the available bandwidth and specialized certain areas for things like low-bandwidth data such as web and email, cell-phone updates, and high-bandwidth videos. The developer claims that it could increase typical router throughput by up to seven times (7X).

Agriculture Boosted By Low Fuel Prices

Rusty orange and gray fuel tanks sit on a covered wooden platform with labels such as "car gas" and "diesel."
Rusty orange and gray fuel tanks sit on a covered wooden platform with labels such as "car gas" and "diesel."
Farm fuel tanks with labels such as “car gas” and “diesel.” Creative commons liscensed image from Eliot Phillips on Flickr.

Phys.org reports on how not everyone is being hurt by lower gas prices. In addition to giving middle-class America a well-deserved break on rising prices, farmers and ranchers are reaping the benefits of low gas prices and finally refilling the fuel tanks they have kept near-empty since prices soared a number of years ago. Farmers have been sticking with lower-maintenance crops to save on fuel are planning on planting more higher expenditure crops such as corn and rice since the cost to cultivate, plant, rear, harvest, and deliver are not eating into their pocket books as deeply as in recent years. Similarly for ranchers, the cost to raise and feed cattle hinges a lot on fuel prices as it takes many farm vehicle hours (tractors, balers, planters, fertilizers, sprayers, trucks, etc) to feed, move, and deliver farm animals as well as to farm the hay, silage, and grains that they consume. [quote align=”right” width=”40%”]”However, the other side of the coin is that while we have had a collapse in the oil market, we also have had a collapse in the grain market.”[/quote]

High gas prices and low crop prices in recent years have eroded profit margins for farmers and have lead to price increases at the supermarkets. Even though consumers won’t see lower food prices it will likely mean the price increases may slow in the midterm. It’s also noted that transportation cost only contributes a small percent to food prices. Much of the cost comes from the cost of recent natural disasters such as droughts, frost, and flooding that occurred in farm areas. Disasters and market price fluctuations along with production costs (which include fuel used on the farm) make up the bulk of the cost of food.